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We present a new variant of the simultaneous Stone-Weierstrass approximation
of a function and its partial derivatives, when the function takes its values in a
Banach space, and provide an explicit and direct computation of this approxima­
tion. In the particular case of approximation by means of polynomials, we show
that the simultaneous approximation can be required to be exact at a finite number
of prescribed points. '1" ) 994 Academic Press, Inc.

INTRODUCTION

The first extension of the Stone-Weierstrass approximation theorem to
the simultaneous approximation of a function and its partial derivatives
was established by L. Nachbin in 1949 [11]. Since then, a great deal of
work has been carried out on improving and extending this result, notably
to mappings from a Banach space into another Banach space. An out­
standing synthesis of these works has been achieved in the exhaustive
treatise of J. G. Llavona [10], which moreover furnishes an extensive
bibliography and a historical account. An extension of some of these
results to mappings from locally compact Hausdorff spaces into topological
vector spaces has been established in [13, 14]. Recently, extensive studies
have also focused on the estimation of the error for the Hermite interpola­
tion of a function (see [1-3] for example). However, the information about
the simultaneous approximation of a function and its derivatives has not
been well disseminated yet.

In the first part of this paper, we present a new approach to the
approximation of a function, which not only furnishes an explicit computa­
tion of the approximation, but also extends the approximation of the
function to the simultaneous approximation of the function and its partial
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derivatives. In the second part of this paper, we present a new result on
the combination of the simultaneous approximation and the Hermite
interpolation, in the particular case of approximations by means of polyno­
mials. For information about the Hermite interpolation, see [5] or [9] for
example. For the first part of this paper, we apply the method of se­
quences of kernels, which is very well known in Harmonic Analysis (see [6]
for example) to establish the Weierstrass theorem on approximation by
means of polynomials or trigonometric polynomials. We extend this result
to the approximation by means of a set of functions that is not supposed to
be an algebra in general, but which satisfies some conditions that are easy
to check, giving a new variant of the Stone-Weierstrass theorem.

Our interest in the simultaneous approximation of a function and its
partial derivatives originated from the study of connectedness properties
by means of smooth curves in topological vector spaces. As a consequence
of the results of this paper a synthesis of the results of the first step of [4]
and the results of [12] has been achieved in [4].

Throughout this paper, we will use the following notation and terminol­
ogy. We let N = {O, 1, ... }. Then

is the set of all multi-indices. We define

lal = al + ... +a,J'

If [ is an [f;£-Banach space and 51 ~ [f;£n, 52 ~ [, then we denote by
C m(51, 52) the set of all mappings f from an open neighborhood g(J) ~

[f;£n of 51 into 52 that are m times continuously differentiable, or just
continuous when m = O. Besides, if f E C m(5 1, 52) and a = (at,···, an)
E Nn is such that la I :-;;; m, then we denote by f(a) the mixed derivative

J1a'f( x)
------E[

where the partial derivatives are defined in the usual elementary way. The
use of the Frechet derivative would be an unnecessary obfuscation in this
case.
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If fl"'" fn E C°([l~, IR), then f, ® '" ® fn denotes the mapping f E

comn, IR) defined by

If ~ \' ... , ~ n are subsets of CO(IR, IR), then ~ \ ® ... ® ~ n denotes the
subset of com n

, IR) of all mappings f of the form

f = r. CJil ® ... ® fin'
i~l

where Ci E IR, fil E ~I"'" fin E ~n for every i E {l, ... , r}. If [ is a
topological IR-vector space, and ~ ~ comn, IR), then 2l ® [ denotes the
set of all mappings f E CO(W, [) of the form

r

f(x)= L.ai(x)vi
i~1

where r E {l, 2, ... ,}, al"'" a r E 2l, and v\"'" vr E [. Clearly, when 2l
is an IR-vector subspace of c°(lRn, IR) and [ = IR, then 2! ® IR = 2l. In the
particular case where 2l = IR( x I' ... , X n] is the set of all real polynomials
in n variables, it follows directly from the definition that 2! ® IE is the set
of all mappings p from IRn into [ of the form

L. X~I'" xinw ... i = E XiWi
(i\ •... ,in)E..Y n II n iE..Y

where p\, ... , Pr E~, v\, ... , vr E IE, J is a finite subset of Nn, and
Wi = W i . i E [ for every i = (il, ... ,in ) EJ. We will say that every

I n

p E IR[Xl"'" xn] ® [is an [-polynomial in n variables. Since lR[x\, ... , x n]
is an IR-vector subspace of cO(lRn, IR), we have

Finally, we let

Cr = [-r,r)" = {(x" ... ,xn ) E IRnj - r .$xk .$ r Vk E {l, ... ,n}},

Vr> O.

A sequence Ko, K 1, ••• E cO(lRn, IR) will be called a Dirac sequence of
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kernels normalized with respect to a measurable neighborhood No of 0 in
~" if and only if

(D1) Ki(x) ~ O"ii EO N, x EO No.

(D2) j'N K/x)dx = 1 Vi EO N.
Ii

(03) For every t: > 0 and {) > 0 such that C" c;;; No, there exists
it" EO N such that

RESULTS

THEOREM 1. (Simultaneous Stone-Weierstrass Approximation of a
Function and Its Partial Derivatives). Let ~ c;;; cm([R",~) and r > O.
Suppose there exists a Dirac sequence of kernels Ko, K l , ••• EO C°([R", [R)
normalized with respect to C2r such that for every i EO N, there exist
ail' ... , a ip, E ~ and 'Pi I ' ... , 'Pip, E CO([R",~) such that

p,

K;(x + y) = 1: aik(x)'Pik( y)
k~l

Vx,yE[R". ( 1)

Then for every [R-Banach space [, for every f EO cm([R", [) with support in
Cr , and for every £ > 0, there exists a E ~ ® [ such that

Proof Let [, f, and £ be as above. Let

ai(x) = (-I( [ f(t)Ki(x'- t) dt = (-I(! f(t)Ki(x - t) dt (2)
)~n c,

= J f(x - s)Ki(s) ds
X-Cr

Vx EO [R",i E N. (3)

Then by (I) and (2), we have for every i E N,

p,

ai(x) = (-1)"! f(t) 1: aik(x)'Pik( -t) dt
c, k~ I

hence
p,

ai = 1: aikL'ik E ~ ® [,
k= I
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where for every k E (I, ... , p),

l)ik = (-1(1 f(t)CPik( -t) dt E IE.
c,

Furthermore, since the support of f is contained in Cr , we have

355

(4)

Hence by (3) and (4),

On the other hand, by (02),

Since C r is compact, there exists

( 6)

M = sup sup II j(a)( x) II = sup sup II j(a)( x) II < 00. (7)
lah;m XEC, lalsm XE~n

Moreover, the set of functions {j(a)!a E Nn, lal =::; m} is uniformly
equicontinuous on Cn and hence on IRn, because Cr contains the support
of ra) for every a E Nn, lal =::; m. Consequently, there exists lj > 0 such
that {j < 2r and

E
X - Y E C{j = II j(a)( x) - j(a)( y) II < 2

't/x, y E IR", a E Nn, lal =::; m. (8)

Besides, by (03), there exists io E N such that

(9)

Let i ~ io, a E Nn with lal ~ m, and x E Cr' Then x - Cr ~ Czn and by
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(5), (6), (7), (8), (9), (01), and (02), we have

II j<a)( X) - a~a)( x) II ::; f II j<a)( X) - j<a)( X - t) IIK j ( t) dt
C 2r

::; f (II j<a)(x)11 +11 f(a)(x - t)1I)K j(t) dt
Cz,\Co

::;2Mf Kj(t)dt+~fKi(t)dt
Cz,\Co 2 Co

e e e e
< 2 M + - f K .( t) dt < - + - = e I

4M + 1 2 C z, I 2 2 .

COROLLARY 2. (Use of Functions Generating a Dirac Sequence). Let
~ I' ... , ~ n be subalgebras of the ~-algebra cm(~, ~). Let ~l = ~ I @ ... @

~n' Let r > 0. Let g I' ... , gn E CO(~, ~) be even on IR, and strictly decreas­
ing and nonnegative on [0, 2r]. Suppose that for every k E fl, ... ,n}, there
exist akl , ... , akSk E ~lk and If'kl"'" If'k1k E CO(~, IR) such that

Sk.

gAx + y) = L aki(x)lf'ki(y)
i=l

V'x,yE~. ( 10)

Then for every IR-Banach space IE, for every f E cm (lR n , IE) with support in
cr , and for every e > 0, there exists a E ~l @ IE such that

V'x E Cr ' a E Nn, lal ::; m.

Proof For every k E {I, ... , n}, the hypothesis implies that gk(O) > 0,
and hence, since gk is continuous, f ~r2rgk{t) dt > O. Consequently, we can
define

It follows directly from the definition that the sequence (K)j E N satisfies
(01) and (D2) with respect to C2r . Let us check that it satisfies (03) too.
Let e > °and {j > 0 be such that {j ::; 2r. Let k E fl, ... , n}. Since gk is
strictly decreasing and nonnegative on [0, 2r], and since 0 < {j ::; 2r, we
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have

357

Consequently, there exists ikE N such that

(12)

Let io = max{il, ... ,i,,}. Let i E N be such that i ~ io. Then by (II), (2),
and since g I' ... , g" are even on ~, and strictly decreasing and nonnega­
tive on [0, 2r], we have

Hence, by (02), !c,Kj(x)d.x ~ 1 - E. Thus the sequence (K)iEN is a
Dirac sequence of kernels normalized with respect to C2r . Let i E N, and
x = (xI"'" x,,), Y = (YI"'" Y,,) E [R". Let

Co = (tr g;(ud dU,) ... (/2r g~(u,,) dU,,)'
~ 2r - 2r

Then by (0) and (1), we have

K;(x + y) = cog;(x 1 + YI) '" g~(x" + Y,,)

~ co;fJ.. [j~l a,,( x.J ~'j( y.Jr
n Sk SA

= Co n E ... E akl3'( Xd ... ak13 ,( Xk )Cf'k{3,( Yk)
k~ I {:l,~ I {:l,~'

... Cf'k{3i( Yk)

"
=Con 1: ak{3(xdCf'kl3(Yk)'

k~ I {:lE(I •.. .• Skl'
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where for every /3 = (/31, ... ,/3) E (l"",Sk}i,

'Pk{3 = 'Pk{3, .,. 'Pk{3, E CO(IR, IR),

and

because III k is an algebra. It follows that

K;(x + y) = COl E ,au/xd'Pu/YI)]
.,1, E (I ..... 5,)

... [ I: an.d Xn)'Pn,d Yn)]
,1 n E { I •... , 5 n}'

= CoL a L\ ,( x d
L1, .......1n )E{I •... ,5,)'X ... X{I .... ,5n )'

..1E{I •... ,5,}'X ... x{I •... ,5n }'

where

and

'Pt = Co'Pu, ® .,. ® 'PnA
n

E CO(lRn
, IR)

for every A = (AI" , . , An) E {l, ... , Sl}; X .. , X {l, ... ,sn)i. Thus
(K); E N and III satisfy the hypotheses of Theorem 1, and the conclusion
follows. I

COROLLARY 3. (Simultaneous Polynomial Approximation of a Function
and Its Partial Derivatives). For every IR-Banach space IE, for every
f E cm(lRn, IE) with compact support K ~ IRn, and for every e > 0, there
exists an [-polynomial p: IR n

-+ IE such that

\:Ix E K, a E Nn
, lal ~ m,

Proof Let ~ = IR[ XI' •. , , X n] and ~ 1 = IR[ x], It follows directly from
the definitions that ~ = ~ I ® ." ® ~ I' Let r > °be such that Cr con­
tains K. Let

\:Ix E IR.
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Then g 1 is even on IR, and strictly decreasing and nonnegative on [0, 2r].
Furthermore,

'tIx,y E IR.

Thus (~t' ... , ~" gl"'" g,) satisfies the hypotheses of Corollary 2, and
the conclusion follows. I

Remark. In Corollary 3, the Dirac sequence generated by (g" ... , gt)
through Formula (11) is the well-known Landau sequence of kernels.

COROLLARY 4. (Simultaneous Approximation of a Function and Its
Partial Derivatives by Means of Hyperbolic Functions). Let ~, be the
subalgebra of the IR-algebra Cm (lR, IR) generated by the hyperbolic functions

~t = {x 0--+ k~O ak cosh kx + bk sinh kxls E N

and ao, ... ,as,bo, ... ,b, E IR}.

Let 21 = 21 1 @ '" @ 2f t ~ cm(lR n
, IR). Then for every IR-Banach space IE,

for every f E cm(iRn, IE) with compact support K ~ IR n
, and for every E > 0,

there exists q E ~ @ IE such that

Proof Let r > 0 be such that Cr contains K. Let Co = cosh 2r, and

g.(x) = CD - cosh x Vx E IR.

Then gl is even on IR, and strictly decreasing and nonnegative on [0, 2r].
Moreover,

gl(x + y) = Co - cosh(x + y) = Co - cosh x cosh y - sinh x sinh y

'tIx,yEIR.

Thus (21 1"", ~1' g], ... , gl) satisfies the hypotheses of Corollary 2, and
the conclusion follows. I

The following theorem furnishes a generalization of the Hermite inter­
polation, in vector spaces, by means of polynomials in several real vari­
ables. Following the important trend to study some parts of analysis by
means of pure algebra (see the extensive work of E. R. Kolchin [7, 8] for
example), we present this generalization in a pure algebraic setting. For
this, we define the derivative of a general polynomial in the following
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algebraic way: Let IE be an (algebraic) ~-vector space. Let p: ~" --> IE be an
IE-polynomial, that is,

p(X) = L c[x i

iEY

Vx E ~",

where J is a finite subset of N", and Ci E IE for every i E J. Then for
every a E N", we define the derivative p(a) of p by

Vx E [R",

with the usual convention L[ EOYj = 0.

THEOREM 5. (Hermite Interpolation in Vector Spaces by Means of
Polynomials in Several Variables). Let IE be an (algebraic) [R-vector space
of any dimension. Let aI' ... , aN E ~" be distinct. For every k E {I, ... , N}
and a E {O, ... , m}", let vka E IE. Then there exists an fE-polynomial p:
[R" --> IE such that

Vk E {I, ... ,N}, a E {O, ... ,m}".

Proof Let k E {I, ... , N}. Let (a k1 , ... , ak,,) = ak. Let a =

(a l , ... , a,,) E {O, ... , m}". Let i E {I, ... , n}. By Hermite interpolation,
there exists a polynomial Pka': [R --> [R such that

VjE {I, ... ,N},A E {O, ... ,m}.

Let Pka = Pkal 0 ... 0 Pka,,' Then

P(I3)( a.) = p(I3I)( a ) ... p(l3n)( a )ka} kal}l ka"},,

VjE {1, ... ,N},13 = (131, ... ,13,,) E {O, ... ,m}".

Let

N

p(x) = L L Pka(X)Uka
k=l aE{D, ... ,m}n

Then we have

VXE[R".

N N

p(a)(ad = 1: L p;;)(ak)uj13 = L. L BkjBal3vjl3 = uka
j = 1 13 E 10, ... , mIn j ~ 1 13 E 10, ... , mIn

Vk E {1, ... ,N}, a E {O, ... ,m}". I



THE STONE-WEIERSTRASS APPROXIMATION 361

Remark. We do not need to find a polynomial of minimal degree in
Theorem 5. If not known, this may be a hard and interesting open
problem.

THEOREM 6. (Simultaneous Polynomial Approximation of a Function
and Its Partial Derivatives Which Is Exact at a Finite Number of Pre­
scribed Points). For every ~-Banach space IE, for every f E Cmm", IE) with
compact support K, for every a I' ... , aN E ~n distinct, and for el'ery e > 0,
there exists an IE-polynomial p: ~n ~ IE such that

and moreover

Vk E {l, ... ,N}, a EN", 10'1:$ m.

Proof Clearly, there exists r> °such that K U {a l , ... , aN} ~ Cr' By
Theorem 5, for every k E {l, ... , N} and a E {O, ... , m}", there exists a
polynomial Pka: rR n

~ rR such that

Vi E {l, ... ,N}, {3 = {O, ... ,m}". ( 13)

Since Cr is compact, there exists

M = max max max max Ipjfc}(x) I,
kE{I ....• N} lal,;m 1131,;m XEC,

(14)

and moreover, by (13), 1 :$ M < 00. On the other hand, by Corollary 3,
there exists an IE-polynomial q: [R" ~ IE such that

e
II ral(x) - q(a)(x)11 < «n + m)!jn!m!)NM + 1

"Ix E Cr , a E Nn
, 10'1 :$ m. (15)

Let

and

Vk E {l, ... ,N}, a E Nn
, 10'1:$ m,

( 16)

N

p(x) = q(x) - L L Pka(x)dka
k ~ I lal,,;m

VXErR". (17)

Let k E {l, ... , N} and a E N" be such that 10'1 :$ m. Then, by (13), (16),
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and (17) we have
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N

L L p)gl( addij3

i~llf;ll<::m

N

L L 0ki Ooj3di{3
i= 1 1j3I<:::m

= q(O)(a k ) - dko = q(o)(ad - q(ol(ad + f(O)(a k ) = t<ol(ad.

Furthermore, by (15) and (16), we have

Finally, by (I4), (I5), (17), and (18), we conclude that

N

IIFa)(x) - p(a)(x)11 ~llf(a)(x) - q(O)(x) II + L L Ip~~)(x)llIdk{311
k~IIf;lI<::m

E

< -----------
((n + m)!/n!m!)NM + 1

(n+m)! E
+ NM = E. I

n!m! ((n + m)!/n!m!)NM + 1
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