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We present a new variant of the simultaneous Stone-Weierstrass approximation
of a function and its partial derivatives, when the function takes its values in a
Banach space, and provide an explicit and direct computation of this approxima-
tion. In the particular case of approximation by means of polynomials, we show
that the simultaneous approximation can be required to be exact at a finite number
of prescribed points. © 1994 Academic Press, Inc.

INTRODUCTION

The first extension of the Stone—Weierstrass approximation theorem to
the simultaneous approximation of a function and its partial derivatives
was established by L. Nachbin in 1949 [11]. Since then, a great deal of
work has been carried out on improving and extending this result, notably
to mappings from a Banach space into another Banach space. An out-
standing synthesis of these works has been achieved in the exhaustive
treatise of J. G. Llavona [10]), which moreover furnishes an extensive
bibliography and a historical account. An extension of some of these
results to mappings from locally compact Hausdorff spaces into topological
vector spaces has been established in [13, 14]. Recently, extensive studies
have also focused on the estimation of the error for the Hermite interpola-
tion of a function (see [1-3] for example). However, the information about
the simultaneous approximation of a function and its derivatives has not
been well disseminated yet.

In the first part of this paper, we present a new approach to the
approximation of a function, which not only furnishes an explicit computa-
tion of the approximation, but also extends the approximation of the
function to the simultaneous approximation of the function and its partial
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derivatives. In the second part of this paper, we present a new result on
the combination of the simultaneous approximation and the Hermite
interpolation, in the particular case of approximations by means of polyno-
mials. For information about the Hermite interpolation, see [5] or [9] for
example. For the first part of this paper, we apply the method of se-
quences of kernels, which is very well known in Harmonic Analysis (see [6]
for example) to establish the Welerstrass theorem on approximation by
means of polynomials or trigonometric polynomials. We extend this result
to the approximation by means of a set of functions that is not supposed to
be an algebra in general, but which satisfies some conditions that are easy
to check, giving a new variant of the Stone-Weierstrass theorem.

Our interest in the simultaneous approximation of a function and its
partial derivatives originated from the study of connectedness properties
by means of smooth curves in topological vector spaces. As a consequence
of the results of this paper a synthesis of the results of the first step of [4]
and the results of [12] has been achieved in [4].

Throughout this paper, we will use the following notation and terminol-
ogy. We let N = {0,1,...}. Then

N = {(m,...,m)m,,....,m, € N}

is the set of all multi-indices. We define

lal =a; + - +a,, al=a,! - a,l,
a-B=(a,—-B,--sa,~ B,), a<Bea <B,...,a,<B,,
X =x® xS Ya=(a,...,a,) €N,

B=(Bl’-"aB")ENn, X=(x,,...,xn)€R",

If £ is an R-Banach space and S, c R", §, C [, then we denote by
C™(S§,, §,) the set of all mappings f from an open neighborhood 2(f) C
R™ of §, into §, that are m times continuously differentiable, or just
continuous when m = 0. Besides, if f € C™(S§,,S,) and a = (a,,...,a,)
€ N” is such that |a| < m, then we denote by f(® the mixed derivative

gl
P = e, €F W= (rn) €507,

where the partial derivatives are defined in the usual elementary way. The
use of the Fréchet derivative would be an unnecessary obfuscation in this
case.
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If fi,...,f, € C°(R,R), then f, ® -+ ® f, denotes the mapping f
C(R", R) defined by

fxooxn) =fillxy) - fu(x,)  Vx,...x, €R

If %,..., %, are subsets of C/R,R), then A, ® --- ® A, denotes the
subset of C°(R", R) of all mappings f of the form

f= Eci n® 8 f,
i=1
where ¢, €R, f,,€¥U,,....f,€¥U, forevery ic{l,..., r}. If Eis a
topological R-vector space, and % € C%(R”, R), then A ® E denotes the
set of all mappings f € C%R", E) of the form

r

f(x) = Zai(x)vi Vx € R",

i=1

where r € {1,2,...,}, a,,...,a, € ¥, and v, ..., v, € E. Clearly, when %
is an R-vector subspace of C%(R” R) and F = R, then 4 ® R = . In the
particular case where % = R[x,,..., x,] is the set of all real polynomials

in n variables, it follows directly from the definition that % ® [ is the set
of all mappings p from R” into E of the form
p(xy, .., x,) =p (X, x)v + o +p(xy, ..., x,)0

= Xy xhw o, = L x'w,

Gyyonny ies e s

Vx=(x,...,x,) €R",

where py,...,p, €U, v,,...,v, € E, £ is a finite subset of N” and
w,=w, ., €L for every i = (iyy...,i,) €F. We will say that every

pE R[;l,' ., X, ] ® Eis an E-polynomial in n variables. Since Rl x|, ..., x,]
is an R-vector subspace of C%R”, R), we have
Rlx;....x,]®R=R[x,,...,x,].
Finally, we let
C,=[-r.r]"={(x1,.-.,x,) €R"| —r<x, <rVke{1,...,n}},
Yr > 0.

A sequence K, K,,... € C%R",R) will be called a Dirac sequence of



354 EVARD AND JAFARI

kernels normalized with respect to a measurable neighborhood N, of 0 in
R™ if and only if

(D) K(x) 2 0VieN, x €N,

(D2) J’N”K,'(x)dx = 1 Vl S N

(D3) For every € > 0 and & > 0 such that C; C N,, there exists
i.s € N such that

[ K(x)de=1-e Vizi,,.
C;

&

REsuLTs

THeorem 1. (Simultaneous Stone—Weierstrass Approximation of a
Function and Its Partial Derivatives). Let A ¢ C™(R",R) and r > 0.

Suppose there exists a Dirac sequence of kernels K, K,,... € C'(R",R)
normalized with respect to C,, such that for every i € N, there exist
a,.a, €Wand ¢,,..., 9, € CYUR", R) such that
b
K(x+y)= 2 a,(x)ex(y) Vx,y € R (1)

k=1

Then for every R-Banach space E, for every f € C™(R", ) with support in
C,, and for every € > 0, there exists a € U ® b such that

[Feqxy —a(x)|<e VYxeC,.,aeN" |al <m.

Proof. LetE, f, and ¢ be as above. Let
a(x) = (=1 fOK (=0 di= (=D)"[ fOK(x =)t ()
= /X—C'f(x ~5)K,(s)ds VxeR"ieN. (3)
Then by (1) and (2), we have for every i € N,
a(x) = (—1)"fcrf(t)k§]aik(x)<p‘-k(—t) di  VxeR",

hence
P
a;= ) ayr, € ABE,
k=1
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where for every k € {1,..., p},
b= (=) [ f()eu( -1y dt < E.

Furthermore, since the support of f is contained in C,, we have
f(x)=0 VxeR'\C,acN" lal <m. (4)

Hence by (3) and (4),

al®(x) =f f@(x — t)K,(t) dt =f f>x — 1)K, (t)dt
x—C, R"

VxeR, ae N, jJa <m. (5)

On the other hand, by (D2),

f(x) = f FEO(x)K, () de VieN,xeR" a N, lal <m.
Cyy
(6)
Since C, is compact, there exists

M= sup sup | f@(x)] = sup sup || f(x)] < . (7)

lalsm x€C, Jalsm x€R"
Moreover, the set of functions {f‘“}a € N", |al < m} is uniformly
equicontinuous on C,, and hence on R", because C, contains the support

of f' for every @ € N", |a| < m. Consequently, there exists & > 0 such
that 8§ < 2r and

£
x~yeCs=|fx)~fOyl < 5
Vx,yeR", ae N, lal <m. (8)

Besides, by (D3), there exists i, € N such that

fCK,(x)dxz 1- Vi > ig. (9)

€
4M + 1

Leti > iy, « € N" with Ja| < m, and x € C,. Then x - C, € C,,, and by
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(5), (6), (D), (8), (9), (D1), and (D2), we have
If(x) = a@(x)] < fC Fre(xy = Frx = )|k, (1) ar
(a) @ -
< fcz,\cﬁ(“f O+l e = oK) de
+ [ Iy = o =0 IK (1) ar
Cs

&
<2M K,(t)dt + —f K,(1) dt
€0N\Cs 27c,

<2M

E K a' £ £
+ = 1)dt < =+ = =¢.
2fq’,() s+5=e |

€
4M + 1

CoroLLaRY 2. (Use of Functions Generating a Dirac Sequence). Let
A, ..., U, be subalgebras of the R-algebra C"(R,R). Let A=A, ® -+ ®

A Letr>0. Letg,,..., 8, € CUR,R) be even on R, and strictly decreas-
ing and nonnegative on [0, 2r]. Suppose that for every k € {1, ..., n}, there
exist agy,..., 4y, € Uy and @y, ¢, € CUR,R) such that
Sk
gu(x +y) = X a(x)edy) Vx,y € R. (10)

i=1

Then for every R-Banach space E, for every f € C™(R", E) with support in
C,, and for every € > 0, there exists a € W ® b such that

[fox) —a(x)<e VxeC,aeN jal <m.

Proof. For every k € {1, ..., n}, the hypothesis implies that g,(0) > 0,
and hence, since g, is continuous, [2%,g,(t) dr > 0. Consequently, we can
define

gi(xl) T g;(xn)

2r i 2r .
[ i) du) -+ [ gicu) d, |
—2r —2r
Vx,...,x, €R,ieN. (11)

Ki(x,....,x,) = (

It follows directly from the definition that the sequence (K,), .y, satisfies
(D1) and (D2) with respect to C,,. Let us check that it satisfies (D3) too.
Let ¢ > 0 and 8 > 0 be such that § < 2r. Let kK € {1,..., n}. Since g, is
strictly decreasing and nonnegative on [0, 2r], and since 0 < § < 2r, we
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have

8x(8/2)

>

gk(g)>gk(8)20, ‘lim[ 8:(0) ]'=

Consequently, there exists i, € N such that

g (8) 1 &

|2 P2 VieN,i>i,. (12)
g.(8/2) 4r

Let i, = max{i,,...,{,}. Let i € N be such that i > i,. Then by (11), (12),

and since g,,..., g, are even on R, and strictly decreasing and nonnega-

tive on [0, 2r], we have

fgk(t)dt n ;( 2Ir— 8

C2\Gs ) "gi(u) du f gi(u) du

8()2r f_[ 8.(8) ]<
1 88/D(8/2)  imr b a8/ |

Hence, by (D2), [, K{(x)dx > 1 — ¢ Thus the sequence (K, is a
Dirac sequence of kernels normalized with respect to C,,. Let i € N, and
x={xy...,x), y=(y-..,y,) € R" Let

1

(/7 ety dn ) - ([ siw) du,)

Then by (10) and (11), we have

Co =

Ki(x+y)=cogi(x, +y) " gulx, +5,)

=g I_I Z ak;(xk)‘Pk,(yk)}

j=1
Sk
=Con Z E akBl(xk) akﬂ,(xk)‘pk[sl(yk)
k=1pg,=1 Bi=1
: ka;s,()’k)

=COI;I—I Z aklg(xk)‘PkB(yk)’

=1geq,..., s
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where for every B8 = (8,,...,8) €{1,...,s.),

Prpg = Pup, T Pup, € CO(R,R),
and

Qg = Ayp, """ Aip, € Ay,

because U, is an algebra. It follows that

Ki(x+y)= Cu[ )y aljl(xl)‘pl.\l(yl):l

[ > an,‘n(xn)cpn‘.n(yn)]

A, e{1,..., saY

= ¢y ) ay,(xy)

(Ao, Ae(l, ..., siFxo- - x {1, ..., s}

) anA,,(xn)‘Pm,(Yl) (PnA,,(yn)
= > a(x)es(y),

Ae{l,.. ., s xdlL L., 5.}
where

ag=a;, ® ®a, €A A =Y,

and

Pa=Cop1s, ® 1 ® g, € COR",R)

for every A =(A,...,A)e{l,...,s}) x -~ x(l,...,s,). Thus
(K,);er and U satisfy the hypotheses of Theorem 1, and the conclusion
follows. ||

CoroLLARY 3. (Simultaneous Polynomial Approximation of a Function
and Its Partial Derivatives). For every R-Banach space E, for every
f e C™MR",E) with compact support K C R", and for every & > 0, there
exists an [E-polynomial p: R" — E such that

[fx) —p(x)|<e VxeK,aeN",|al <m.

Proof. Let A =Rlx,...,x,)and A, = Rlx]. It follows directly from
the definitions that A = A, ® --- ® A,. Let r > 0 be such that C, con-
tains K. Let

g(x)=@2r)Y -x* VxeR.
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Then g, is even on R, and strictly decreasing and nonnegative on [0, 2r].
Furthermore,

gx +y)=(2r) —x¥—2xy — 2 Vx,y € R.

Thus (A,..., A, g,,..., g,) satisfies the hypotheses of Corollary 2, and
the conclusion follows. |

Remark. In Corollary 3, the Dirac sequence generated by (g,,..., g,)
through Formula (11) is the well-known Landau sequence of kernels.

CoroLLAaRY 4. (Simultaneous Approximation of a Function and Its
Partial Derivatives by Means of Hyperbolic Functions). Let U, be the
subalgebra of the R-algebra C™(R,R) generated by the hyperbolic functions

A, = {x— Y a,coshkx + b, sinh kx|s € N
k=0

and aO,...,aS,b(,,...,bsEIR}.

Let A=A 0 - @A c C"(R",R). Then for every R-Banach space [,
for every f € C™(R",b) with compact support K € R", and for every ¢ > 0,
there exists g € A @ € such that

lF(x) —g(x)| <e VxeK,aeN", |al <m.
Proof. Let r > 0 be such that C, contains K. Let ¢, = cosh2r, and
g,(x) =¢,— cosh x Vx e R,

Then g, is even on R, and strictly decreasing and nonnegative on [0, 2r].
Moreover,

g(x +y)=c,—cosh(x +y) = ¢, — cosh x cosh y — sinh x sinh y
Vx,y € R.

Thus (A,,..., %A, g,,...,8,) satisfies the hypotheses of Corollary 2, and
the conclusion follows. |}

The following theorem furnishes a generalization of the Hermite inter-
polation, in vector spaces, by means of polynomials in several real vari-
ables. Following the important trend to study some parts of analysis by
means of pure algebra (see the extensive work of E. R. Kolchin [7, 8] for
example), we present this generalization in a pure algebraic setting. For
this, we define the derivative of a general polynomial in the following
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algebraic way: Let [ be an (algebraic) R-vector space. Let p: R” — [ be an
E-polynomial, that is,

p(x)= Y cx' VYxeR"
iesf

where .7 is a finite subset of N", and ¢, € E for every i € .#. Then for
every a € N", we define the derivative p® of p by

i! ,
p(“)(x) = Z c,—.———'—x"" Vx € R",
ieSiza (l - a).
with the usual convention L, .y, = 0.

THeoreMm 5. (Hermite Interpolation in Vector Spaces by Means of
Polynomials in Several Variables). Let E be an (algebraic) R-vector space
of any dimension. Leta,,...,a, € R" be distinct. Forevery k € {1,..., N}
and a €{0,...,m}", let v,, € E. Then there exists an E-polynomial p:
R" — E such that

pNa) =v,, Vkell,...,N},aec{0,...,m}".

Proof. Let ke{l,...,N}). Let (a,,...,a,,) =a, Let a=
(ay,...,a,)€{0,...,m)". Let i €{1,...,n}. By Hermite interpolation,
there exists a polynomial p, ;: R — R such that

pi(a;) = 84 a0, 000, vie{l,...,N},xe{0,...,m}.
Let pry = Pia1l @ ' ® Dran- Then

pka)(a ) —pyfxll)(ajl) e piBe( a,,)

“Jl”klsﬁlal o 5“,,.”/(,.5!3"% = 5“,"1(5130 = akaBa

vie(l,...,N},B=(B,....B,) €{0,....,m}".
Let

p(x) =X Y DX,  VYxeR™
Then we have
p'(ay) = Z Y pa)u = Z Y Skbupls = Uka

Vke {l,...,N},ae{0,....m}". 1
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Remark. We do not need to find a polynomial of minimal degree in
Theorem 5. If not known, this may be a hard and interesting open
problem.

Tueorem 6. (Simultaneous Polynomial Approximation of a Function
and Its Partial Derivatives Which Is Exact at a Finite Number of Pre-
scribed Points). For every R-Banach space E, for every f € C™(R", E) with
compact support K, for every a,, ..., ay € R” distinct, and for every ¢ > 0,
there exists an E-polynomial p: R" — E such that

lf<o(x) —p(x)| <e VxeK,aeN,lal <m,
and moreover
p'ay) =f*a,) VYke{l,...,N},aeN" |a| <m.

Proof. Clearly, there exists r > 0 such that K U {a,,...,a,} € C,. By
Theorem 5, for every k € {1,..., N} and a € {0, ..., m}", there exists a
polynomial p,,: R” — R such that

pNa) = 8,8, Vie{l,.. N},B={0,....m}". (13)
Since C, is compact, there exists

= max max max max|p{f(x)|, (14)
ke{1,..., N} lalsm |Blsm x€C,

and moreover, by (13), 1 < M < ». On the other hand, by Corollary 3,
there exists an E-polynomial g: R” — E such that

€
((n+m)t/ntmYNM + 1
VxeC,,a e N, lal <m. (15)

I f(x) = g (0 <

Let

dio =q"ay) — fNa, )€t  VYke{l,...,N},aeN", |a] <m,
(16)

and

N
p(x) =q(x) = L L Pea(X)dpy VxR (17)

k=1lalsm

Let k €{1,..., N} and « € N” be such that || < m. Then, by (13), (16),
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and (17) we have

N
p(a)(ak) = q(a)(”k) - Z Z Pfé')(“k)d,p
i=1|Bl<m

N
=q(a)(ak) - Z Z 5/(!'5(de[[1

i=1|Bl<m
= qm)(ak) —dy, = q(a)(ak) - q(a)(ak) +f(a)(ak) = f(a)(ak)'
Furthermore, by (15) and (16), we have

€
((n+m)l/n'm)NM + 1~

Idoll =lla(ay) — f“(a,)]| < (18)

Finally, by (14), (15), (17), and (18), we conclude that

N
[7(x) = p ()| <l f@(xy —g(x) [+ X X |pi(x)|ldgl

k=1|Bl<m
£

< ((n+m)t/ntmYNM + 1
(n+m)! €
NM =
nlm! ((n +m)!/m!mYNM + 1
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